1,087 research outputs found

    Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

    Get PDF
    We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 M\text{M}_{\odot} and mass ratios between 1/61/6 and 1\,. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.Comment: 9 pages, 4 figures, corrected the name of one author (previously misspelled

    Enhancing the significance of gravitational wave bursts through signal classification

    Get PDF
    The quest to observe gravitational waves challenges our ability to discriminate signals from detector noise. This issue is especially relevant for transient gravitational waves searches with a robust eyes wide open approach, the so called all- sky burst searches. Here we show how signal classification methods inspired by broad astrophysical characteristics can be implemented in all-sky burst searches preserving their generality. In our case study, we apply a multivariate analyses based on artificial neural networks to classify waves emitted in compact binary coalescences. We enhance by orders of magnitude the significance of signals belonging to this broad astrophysical class against the noise background. Alternatively, at a given level of mis-classification of noise events, we can detect about 1/4 more of the total signal population. We also show that a more general strategy of signal classification can actually be performed, by testing the ability of artificial neural networks in discriminating different signal classes. The possible impact on future observations by the LIGO-Virgo network of detectors is discussed by analysing recoloured noise from previous LIGO-Virgo data with coherent WaveBurst, one of the flagship pipelines dedicated to all-sky searches for transient gravitational waves

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications

    Get PDF
    Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field

    Impact of estrogen receptor alpha on the tamoxifen resistance in breast cancer patients

    Get PDF
    Genetic aberrations and changes in the activity of estrogen receptors alpha (ERa[lpha]) play an important role in the endocrine sensitivity. The aim of this study was to examine the relationship between the ESR1 expression level, its polymorphic variants, and the distribution pattern of ER[alpha] expression with the prognosis and efficacy of tamoxifen treatment in breast cancer patients. Our data suggest that the ESR1 expression level, SNPs in the ESR1 gene and the distribution pattern of ERα expression can be a potential molecular marker of tamoxifen resistance in breast cancer patients

    On the expressiveness of forwarding in higher-order communication

    Get PDF
    Abstract. In higher-order process calculi the values exchanged in communications may contain processes. There are only two capabilities for received processes: execution and forwarding. Here we propose a limited form of forwarding: output actions can only communicate the parallel composition of statically known closed processes and processes received through previously executed input actions. We study the expressiveness of a higher-order process calculus featuring this style of communication. Our main result shows that in this calculus termination is decidable while convergence is undecidable.

    Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments

    Get PDF
    Abstract Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways

    Continuation-Passing C: compiling threads to events through continuations

    Get PDF
    In this paper, we introduce Continuation Passing C (CPC), a programming language for concurrent systems in which native and cooperative threads are unified and presented to the programmer as a single abstraction. The CPC compiler uses a compilation technique, based on the CPS transform, that yields efficient code and an extremely lightweight representation for contexts. We provide a proof of the correctness of our compilation scheme. We show in particular that lambda-lifting, a common compilation technique for functional languages, is also correct in an imperative language like C, under some conditions enforced by the CPC compiler. The current CPC compiler is mature enough to write substantial programs such as Hekate, a highly concurrent BitTorrent seeder. Our benchmark results show that CPC is as efficient, while using significantly less space, as the most efficient thread libraries available.Comment: Higher-Order and Symbolic Computation (2012). arXiv admin note: substantial text overlap with arXiv:1202.324

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms

    Get PDF
    BCR-ABL1-negative myeloproliferative neoplasms are classically represented by primary myelofibrosis, polycythemia vera, and essential thrombocythemia. These entities are stem cell-derived clonal disorders characterized by hematopoietic progenitor autonomy or hypersensitivity to cytokines, most of them presenting mutations in Janus kinase 2 (JAK2), calreticulin (CALR), or myeloproliferative leukemia virus oncogene (MPL). Deregulation of pro- and antiapoptotic genes is also claimed as an important mechanism involved in cell resistance to cell death and accumulation of myeloid cells in myeloproliferative neoplasms. Apoptosis, as one of the best-characterized types of programmed cell death, has a clear role in hematopoiesis control. However, the exact pathways affected in BCR-ABL1-negative myeloproliferative neoplasms have not yet been fully clarified. This chapter will explore the modifications affecting programmed cell death pathways involved in myeloid proliferation and how these alterations might be exploited in single or combined targeted therapeutic strategies
    corecore